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Abstract: While the balanced chemical equations for a multireaction system are generally not unique, the 
minimum number of independent equations, R, is a characteristic property of the system. Deleting one 
nonspectator species from the system leads to a system with R reduced by one. In this way each system can be 
reduced to a single-reaction system and ultimately to a no-reaction system. The least number of chemical species 
that can be deleted to obtain a no-reaction system equals R. Every multireaction system, therefore, can be 
reduced to a number of single-reaction equations which can be balanced by any one of the standard techniques. 
Some examples are given where balancing by inspection is employed. 

Everybody is aware of the fact that the combustion of 
kerosene produces not only CO2 but also CO with possibly 
lethal consequences. The typical chemistry texts mention, of 
course, competing or consecutive reactions; however, in the 
section on stoichiometry and the balancing of reactions they 
invariably restrict the discussion to single reaction systems and 
ask the students to balance equations given in a skeletal form. 
The tacit implication is that every balancing problem has a 
unique solution. The students, and some teachers [1] as well, 
are then very surprised if they find a sizable number of 
equations for some chemical systems, all perfectly well-
balanced, which are not just multiples of each other. 

The minimum number of independent chemical equations, 
R, required to characterize a system of given chemical species 
is a unique property of the system. This number plays an 
important role in the phase rule and reaction kinetics. In 
chemical equilibria, it is the number of independent 
equilibrium constants of the system. If R is larger than one, the 
term independent means linearly independent in the 
mathematical sense; it does not imply chemical independence, 
as in most cases one deals with coupled, competing or 
consecutive reactions which have one or more chemical 
species in common. Any chemical process from the most 
elementary to the most complex is subject to the fundamental 
constraints of mass and charge conservation, which are 
expressed as balanced chemical equations. If R equals 1 the 
system is characterized by a unique balanced equation if we 
stay with the convention that the stoichiometric coefficients 
are the smallest integers consistent with the conservation 
requirements. Of course, any multiple of a balanced equation 
is also an equivalent, balanced equation. Herndon [2] has 
given an extensive review of methods to balance equations for 
R = 1. For R greater than 1, he states “no unique solution exists 
or the equation cannot be balanced.” It is correct that the 
equations are not unique, but matrix based techniques [3–5] 
prove one can always generate a valid set of balanced 
equations. Smith and Missen have given on their web site [6] 
(http://www.chemical-stoichiometry.net) an excellent 
discussion of the matrix-reduction method to balance 
equations either by hand or, in a Java Applet available to any 
visitor, to let a computer balance the chemical equations for a 
given set of chemical species. Although matrix methods have 
the last word, the following discussion does not explicitly refer 

to the formula table and uses examples that can easily be 
balanced by inspection, including the case of R = 0 where no 
reaction between the given species is possible. It demonstrates 
a systematic approach to determine R and to find one or more 
valid set of balanced equations for multi-reaction systems. 

The problem may be stated as follows. Given a list of N 
chemical species in a system, find the minimum number, R, of 
independent reactions and a set of balanced equations. It is 
convenient, but not necessary, that the equations be as simple 
as possible, that is, contain the smallest number of chemical 
species. These equations are called a canonical set. A 
canonical proper set satisfies the additional criterion that R 
species only appear in separate equations, assuring linear 
independence in a simple fashion. A species may be a reactant, 
a product, or a spectator species with a stoichiometric factor of 
zero. A system with R = 0 is a no reaction system (NRS) and 
consists only of spectators. We take advantage of two facts: 

(a) R is the smallest number of species that can be deleted 
from the original list resulting in an NRS. 

(b) The desired simple equations have at least R – 1 spectator 
species with zero stoichiometric coefficient or, 
equivalently, contain at most N – R + 1 chemical species. 

(c) As a simple example, consider the system 

 { }2 2C, O , CO, CO  (1) 

Obviously, if we delete just one species at a time, we still 
can form balanced equations; however, if we delete any two 
species, the remaining two are an NRS. We conclude that R = 
2 and that each canonical equation has one zero and three 
nonzero coefficients. By inspection we find 

 22C  O  2CO+ =  (1a) 

 2 2C  O  CO+ =  (1b) 

 2C  CO  2CO+ =  (1c) 

 2 22CO  O  2CO+ =  (1d) 
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These four equations are not independent, but any two are. 
We can chose any pair as basis reactions and express the 
others as linear combinations of these two. For example if 
equations 1a and 1b are taken as basic, they are linearly 
independent because equation 1a contains the species CO not 
occurring in equation 1b, which in turn contains CO2 that is 
not part of equation 1a. The other two equations, however, 

 ( ) ( ) ( )1c 1a 1b= −   

 ( ) ( ) ( )1d  2 1b 1a= −   

are dependent on the chosen basis. Depending on the reaction 
conditions, chemical considerations may give preference to a 
particular choice of two basis reactions but the other two, or 
for that matter any other linear combination of the basis 
reactions, yields perfectly balanced chemical equations. For 
example: 

 2 2C  3CO   4CO O+ = +  (1e) 

involves all four species. It is in fact (1e) = 2(1a) – 3(1b). 
Consider the incomplete combustion of methane [6]. The 

six species are: 

 { }4 2 2 2 2CH , O , CO , H O, CO, H   

Clearly, if you leave out the first three species, the 
remaining system {H2O, CO, H2} is an NRS. On the other 
hand, if you delete CH4, H2O, and H2, the remainder {O2, CO2, 
CO} still supports a reaction and one additional species must 
be deleted to reach an NRS. Deleting only any two species 
leaves systems that support a chemical reaction. As R is the 
smallest number of species deleted to get an NRS, it follows 
that R = 3. Each equation in the canonical set contains at most 
four species or has at least two species with zero 
stoichiometric coefficients. There are 6 over 4, which equals (6 
× 5)/(1 × 2) = 15 ways, to select four species. Each choice 
supports one balanced equation. They are, however, not all 
different as some include a spectator species and the equations 
effectively contain only three species as in the two cases 

 2 2 2O   2H   2H O+ =  (2a) 

 2 22CO  O   2CO+ =  (2b) 

each appearing three times in the 15 possible canonical 
equations. That leaves 11 different equations. The third 
independent equation must be one that involves CH4, for 
example 

 4 2 2 2CH   2O   2H O  CO+ = +  (2c) 

Of course, there are many ways, 11 over 3 (which equals (11 
× 10 × 9)/(1 × 2 × 3) = 165) to be exact, by which three 
canonical proper equations may be selected from the 11 
different equations, some of which appear chemically more 

appropriate then others. The remaining equations in the 
complete set are: 

 2 2 2CO   H    CO  H O+ = +  

 4 2 2CH   H O  CO  3H+ = +  

 4 2 2CH   CO    2CO  2H+ = +  

 4 2 2 2CH   2H O  CO   4H+ = +  

 4 2 2CH   3CO   4CO  2H O+ = +  

 4 2 22CH   O   2CO  4H+ = +  

 4 2 22CH   3O   2CO  4H O+ = +  

 4 2 2 2CH   O   CO   2H+ = +  

Any set of three equations fully characterizes the system as 
any other equation may be expressed as a linear combination 
of these basis equations. It is not necessary to generate all of 
them. In fact, the matrix methods are designed to produce only 
R independent equations. Which particular set is obtained 
depends on the order by which the chemical species are 
entered. This ambiguity clearly indicates that, as Smith and 
Missen [6] have observed, a canonical proper set is purely a 
matter of convenience with no essential chemical significance. 

For a systematic approach, in any given list of species we 
drop all spectator species. If this results in an empty set, the 
list represented an NRS. If this is not the case, we can assign 
any one of the nonspectator species to a canonical equation. 
Eliminating this species from the list results in a reduced list 
with the value of R reduced by one. Applying this step 
recursively, eventually we arrive at an NRS. The immediately 
preceding list represents a single reaction system and a 
balanced equation can be found by any one of the standard 
methods. The least depth of nesting to reach an NRS is the 
number of independent reactions, R. Eliminating one species 
of the balanced equation from the original list leads to a 
reduced problem with R reduced by one. The same process is 
then applied until R proper canonical equations are generated. 

In the calculation of the equilibrium composition of a 
system, it makes no difference which set of equations is taken 
as basic. At constant temperature and pressure, the equilibrium 
corresponds to the universal minimum of the Gibbs free 
energy, subject to the constraint of the mass and charge 
conservation [7]. If the system is at equilibrium with respect to 
R independent reactions, it is also at equilibrium with respect 
to any linear combination of these reactions. One might prefer 
to select as basic reactions those for which thermodynamic 
data are directly available, but again, if the data are available 
for a basic set, they can be easily derived for any other allowed 
process which need not be part of the canonical set. 

The equilibrium in a multireaction system, the complexation 
of thallium ion with nitric ion has been discussed by 
Cobranchi and Eyring [8]. The list of the chemical species is:
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 { }2 2 2 3 2 2
- -H , NO , HNO , NO ,  N O , Tl , TlNO , OH , H O+ + +  

Inspection of the list immediately suggests the reactions: 

 2 2
-Tl   NO   TlNO+ + =  (3a) 

 2 2
-H   NO   HNO+ + =  (3b) 

 2
-H   OH   H O+ + =  (3c) 

If we delete either Tl+ or TlNO2 as unique to equation 3a, 
the other becomes a spectator species; therefore, we can drop 
both from the list. NO2

–
 is common to equations 3a and 3b and 

H+ is common to equations 3b and 3c. That leaves HNO2 as 
unique to equation 3b. We still can select either OH

–
 or H2O as 

the unique species in equation 3c. If we assign OH– to 
equation 3c, the reduced list becomes: 

 { }2 2 3 2
-H , NO , NO , N O , H O+ +  

which contains 

 2 2 3
-NO  NO   N O++ =  (3d) 

and 

 2 2
-2 H   NO   H O  NO+ ++ = +  (3e) 

If we assign H2O to equation 3c then 

 { }2 2 3
- -H , NO , NO , N O , OH+ +  

contains equation 3d and 

 2
- -H   NO   NO   OH+ ++ = +  (3e′) 

Nesting is five levels deep and the R = 5 equations, 3a to 3d 
and either 3e or 3e′, fully characterize this system. The system 
therefore requires five independent equilibrium constants. 

The two rules on which the present approach is based are an 
extension of the fact that for a single reaction system without 
spectator species the elimination of any one species leads to a 
no reaction system. They allow us to determine the number of 
independent reactions, R, required to fully characterize the 
system. This number is unique. The choice of basis reactions 
for R > 1, however, is not unique, except if the reactions are 
not only mathematically independent but also chemically 
independent; that is, they have no chemical species in 
common. It is comforting to know that any set of R 
independent balanced equations represents a valid choice. The 
method discussed is not in any way tied to a particular method 
of balancing equations. Any appropriate technique: inspection, 
oxidation numbers, etc. will do, but without a systematic 
approach chemical intuition is unable to establish the value of 
R reliably. To be aware of the implications will, hopefully, 
prevent possible confusion in R > 1 systems. 
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